

Can a Neural ODE Learn a Chaotic System?

Jayjay Park, Nisha Chandramoorthy Computational Science & Engineering Department

Informal Introduction to Dynamical System

- A system whose behavior is described by predefined rules
- Type: Discrete Time vs Continuous Time

Discrete Time Dynamical System

$$x_t = f(x_{t-1}, t)$$

- x_t = state variable of system at time t
- *f* = function that determines the rules by which the system changes its state over time

Lorenz: A Dynamical System that is Non-linear, Discrete-time

Lorenz System $\frac{dx}{dt} = \sigma(y - x)$ $\frac{dy}{dt} = x(\rho - z) - y$ $\frac{dz}{dt} = xy - \beta z$

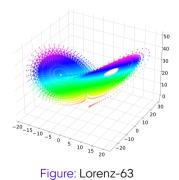
 Depending on the value of σ, β, ρ, lorenz system can be fixed point, periodic, and chaotic

⁰Edward N Lorenz. "Deterministic nonperiodic flow". In: *Journal of atmospheric sciences* 20.2 (1963), pp. 130–141.

Introducing Butterfly Attractor, Lorenz-63

Lorenz-63 is when parameters are $\sigma = 10, \beta = 8/3, \rho = 28$

- Lorenz-63 is a chaotic system
 - deterministic systems,
 - extreme sensitivity to initial points
 - thus behaving like a random system
- Lorenz-63 is an ergodic system
 - a dynamic system, whose ensemble average = time average
 - animation



What would learning Lorenz-63 from data mean?

Learning a chaotic and ergodic system must mean that statistics are reproduced

- Learning a chaotic system would mean
 - Auto-correlation $\rightarrow 0$
 - Lyapunov Spectrum should match to True Lyapunov Spectrum [0.9, 0, -14]
 - Phase Plot should show strange attractor

- Learning an ergodic system would mean
 - Time average should converge
 - Wasserstein Distance $\rightarrow 0$

Neural ODE

Neural Ordinary Differential

$$\frac{dh(t)}{dt} = \phi_h(h(t), t, \theta) \quad s.t. \ t \in [0, T]$$

- h(t) is a hidden layer which produces state at time t. Models the dynamics
- θ is parameter of hidden layers
- ϕ_h is time integrator of h(t)

⁰Ricky TQ Chen et al. "Neural ordinary differential equations". In: *Advances in neural information processing systems* 31 (2018).

Research Question 1: Can a Neural ODE learn a chaotic system?

What is the learning problem of interest?

Does Neural ODE learn chaotic system?

- Is training loss, and train loss reasonably low?
- How does orbit look like?
- Does statistical properties discussed above match?
- Does introducing transition phase in training dataset will influence Neural ODE's learning?

Learning Problem

• Supervised learning problem: $(x_i, \phi(x_i))$

Empirical Risk Minimization Problem: Given $S = \{x_i\}_{i=1}^m$, $x \in \mathbb{R}^d$,

$$\mathbf{R}(h) = \mathop{\mathbb{E}}_{S \sim D^m} \widehat{\mathbf{R}}_s(h) = \mathop{\mathbb{E}}_{S \sim D^m} \frac{1}{m} \sum_{i=1}^m l(z_i, h)$$
$$MSE_loss = l(x, h) = \|\phi_h^{\Delta t}(x) - \phi_f^{\Delta t}(x)\|^2$$

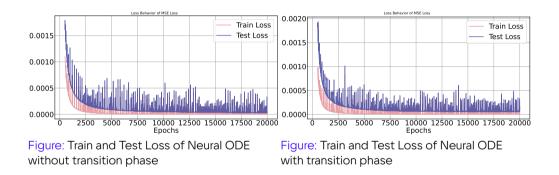
$$Neural_ODE = \frac{d}{dt}\phi_h^t(x) = h(\phi_h^t(x)) \quad t \in \mathbb{R}^+, x \in \mathbb{R}^d, \phi_h^t(x) \in \mathbb{R}^d$$
$$True_ODE = \frac{d}{dt}\phi_f^t(x) = f(\phi_f^t(x)) \quad t \in \mathbb{R}^+, x \in \mathbb{R}^d, \phi_f^t(x) \in \mathbb{R}^d$$

Baseline Experiment Setting

Architecture: 3 Layer Feed Forward Network

- Training Algorithm: AdamW
 - Learning rate: 5e-4
 - Number of epoch: 20000
- Data: are generated from [0, 180] integration time.
 - Time step size: 1e-2
 - Size of Training Data: 10000
 - Size of Test Data: 7500
- Variable for Analysis:
 - For Training: two transition phase, chosen from $\{0,3\}$ in real time

 \Rightarrow Two types of baseline model: MSE_0, MSE_3



- As expected, training loss was small
- Low test error also implies that generalization error will be low as well

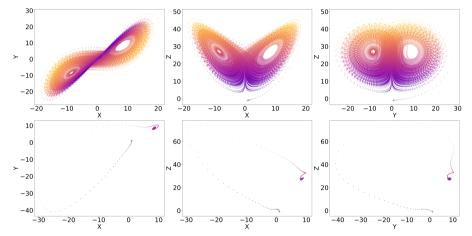


Figure: Phase Plot of True Lorenz and MSE_3's Lorenz starting from outside of attractor

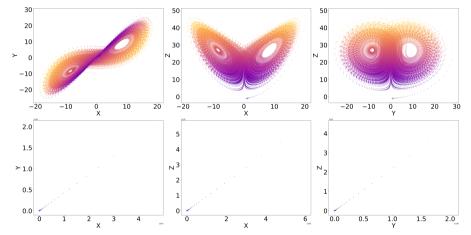


Figure: Phase Plot of True Lorenz and MSE_0's Lorenz starting from outside of attractor

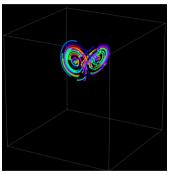


Figure: Animation of 3D Attractor

Finding

Transition phase in traning dataset impacts learning

	Phase Plot	LE
MSE_0	wrong	incorrect $[0.8926, -0.0336, -6.0616]$
MSE_3	wrong	incorrect $[0.9122, -0.0187, -6.1176]$

Neural ODE's learned dynamic is not ergodic.

 $\Rightarrow\,$ Generalization error of Neural ODE being small does not imply that true dynamics are learned!

Research Question 2: How can we make a Neural ODE learn the true dynamics and its statistics?

What is our proposed algorithm?

2 Using the same metric above, can we observe that it can learn true chaotic, ergodic system?

The Proposed Algorithm

- Same supervised learning problem: $(x_i, \phi(x_i))$
- Introducing new loss function

New Empirical Risk Minimization Problem

Jacobian loss =
$$l_{new}(x,h) = \|\phi_h^{\Delta t}(x) - \phi_f^{\Delta t}(x)\|^2 + \lambda \|\nabla h(x) - \nabla f(x)\|$$

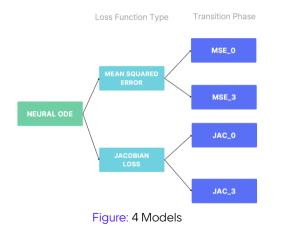
• λ is regularization parameter

New Model's Experiment Setting

- Architecture: 3 Layer Feed Forward Network
- 2) Training Algorithm: AdamW
 - Learning rate: 5e-4
 - Number of epoch: 20000
- Data: are generated from [0, 180] integration time.
 - Time step size: 1e-2
 - Size of Training Data: 10000
 - Size of Test Data: 7500
- Variable for Analysis:
 - For training, **Transition phase**: chosen from $\{0, 3\}$ in real time

 \Rightarrow Two types of new model: JAC_0, JAC_3

Summary of Two Experiments



- "0" means transition phase is included
- "3" means transition phase of 300 data points is excluded
- But what difference does it make?

Experiment Result 1: Loss Behavior

	Train Loss (Jac or MSE)	Test Loss (MSE)		
MSE_0	1.1158e - 05	3.0489e - 05		
MSE_3	9.6705e - 05	0.0001		
JAC_0	1.1301	$\mathbf{9.6022e}-06$		
JAC_3	1.0507	2.6281e - 05		
The last state of the second				

Table: Loss

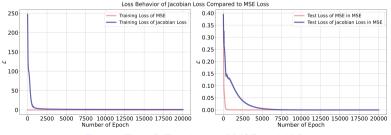


Figure: Train & Test Loss of MSE and JAC

Experiment Result 2: Orbit

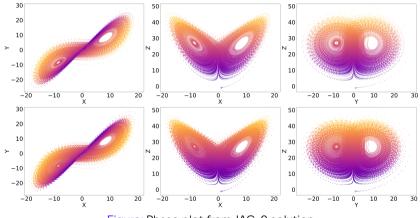


Figure: Phase plot from JAC_0 solution

Experiment Result 3-1: Wasserstein Distance

Model	from attractor	out of attractor
MSE_0	[0.2211, 0.2188, 0.2597]	trajectory explodes
MSE_3	$\left[4.9432, 5.1924, 3.7964 ight]$	[10.2379, 10.8456, 7.8666]
JAC_0	$\left[0.2649, 0.2863, 0.0934 ight]$	$\left[1.0547, 1.0669, 0.0991 ight]$
JAC_3	$\left[0.5337, 0.5399, 0.1708\right]$	$\left[1.0872, 1.1359, 0.3524\right]$

Table: Wasserstein Distance

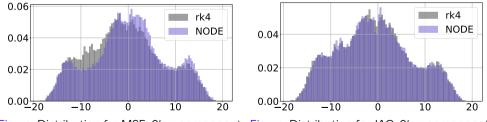


Figure: Distribution for MSE_0's x component Figure: Distribution for JAC_0's x component

Experiment Result 3-2: Time Average

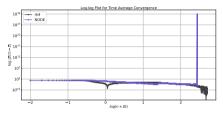


Figure: MSE_0, Init_Point = [1.0, 1.0, -1.0]

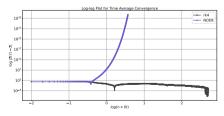


Figure: MSE_0, Init_Point = [1.0, 0., 0.]

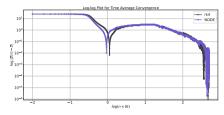


Figure: JAC_0, Init_Point = [1.0, 1.0, -1.0]

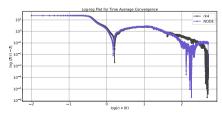


Figure: JAC_0, Init_Point = [1.0, 0., 0.]

Experiment Result 3-3: Lyapunov Exponent

	Lyapunov Exponent	Norm Difference
True LE	[0.9, 0, -14]	
MSE_0	[0.8926, -0.0336, -6.0616]	8.4715
MSE_3	[0.9122, -0.0187, -6.1176]	8.4155
JAC_0	[0.9022, -0.0024, -14.4803]	0.0655
JAC_3	$\left[0.8493, 0.099, -14.5299 ight]$	0.0973

Table: Lyapunov Exponent

Experiment Result 3-4: Auto-Correlation

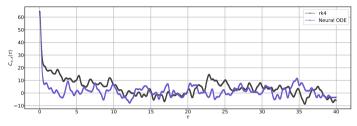
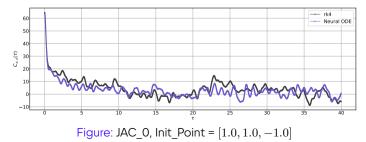


Figure: MSE_0, Init_Point = [1.0, 1.0, -1.0]



Finding

- Adding Jacobian to the loss for Neural ODE learns the correct dynamics for lorenz-63 and its statistics! ⇒ ergodic, and chaotic dynamics
 - Better simulated auto-correlation
 - Computes correct Lyapunov Spectrum
 - Reproduces correct phase plot
 - Time average converges
 - Simulated dataset shows similar distribution

Future Work

- For Lyapunov Exponents, it makes sense that adding jacobian to loss will lead to better estimation of LEs
- But in general, does this work for any dynamical system? Why?
- Must redefine generalization error to reflect true learning of ergodic dynamics

Thank you for coming! Any Questions?