
Can a Neural ODE Learn a Chaotic System?

Jayjay Park, Nisha Chandramoorthy
Computational Science & Engineering Department



Informal Introduction to Dynamical System

• A system whose behavior is described by predefined rules
• Type: Discrete Time vs Continuous Time

Discrete Time Dynamical System

xt = f(xt−1, t)

• xt = state variable of system at time t
• f = function that determines the rules by which the system changes its
state over time

1/25



Lorenz: A Dynamical System that is Non-linear, Discrete-time

Lorenz System

dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz

• Depending on the value of σ, β, ρ,
lorenz system can be fixed point,
periodic, and chaotic

0Edward N Lorenz. “Deterministic nonperiodic flow”. In: Journal of atmospheric sciences 20.2 (1963),
pp. 130–141.

2/25



Introducing Butterfly Attractor, Lorenz-63

Lorenz-63 is when parameters are σ = 10, β = 8/3, ρ = 28

• Lorenz-63 is a chaotic system
• deterministic systems,
• extreme sensitivity to initial points
• thus behaving like a random system

• Lorenz-63 is an ergodic system
• a dynamic system, whose ensemble
average = time average

• animation

Figure: Lorenz-63

3/25



What would learning Lorenz-63 from data mean?

Learning a chaotic and ergodic system must mean that statistics are repro-
duced

• Learning a chaotic system would
mean

• Auto-correlation→ 0
• Lyapunov Spectrum should match
to True Lyapunov Spectrum
[0.9, 0,−14]

• Phase Plot should show strange
attractor

• Learning an ergodic system would
mean

• Time average should converge
• Wasserstein Distance→ 0

4/25



Neural ODE

Neural Ordinary Differential

dh(t)
dt = ϕh(h(t), t, θ) s.t. t ∈ [0,T]

• h(t) is a hidden layer which produces state at time t. Models the dynamics
• θ is parameter of hidden layers
• ϕh is time integrator of h(t)

0Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in neural information
processing systems 31 (2018).

5/25



Research Question 1: Can a Neural ODE learn a chaotic system?

1 What is the learning problem of interest?

2 Does Neural ODE learn chaotic system?
• Is training loss, and train loss reasonably low?
• How does orbit look like?
• Does statistical properties discussed above match?
• Does introducing transition phase in training dataset will influence Neural ODE’s
learning?

6/25



Learning Problem
• Supervised learning problem: (xi, ϕ(xi))

Empirical Risk Minimization Problem: Given S = {xi}m
i=1, x ∈ Rd,

R(h) = E
S∼Dm

R̂s(h) = E
S∼Dm

1

m

m∑
i=1

l(zi, h)

MSE_loss = l(x, h) = ∥ϕ∆t
h (x)− ϕ∆t

f (x)∥2

Neural_ODE =
d
dtϕ

t
h(x) = h(ϕt

h(x)) t ∈ R+, x ∈ Rd, ϕt
h(x) ∈ Rd

True_ODE =
d
dtϕ

t
f(x) = f(ϕt

f(x)) t ∈ R+, x ∈ Rd, ϕt
f(x) ∈ Rd

7/25



Baseline Experiment Setting

1 Architecture: 3 Layer Feed Forward Network

2 Training Algorithm: AdamW
• Learning rate: 5e − 4
• Number of epoch: 20000

3 Data: are generated from [0, 180] integration time.
• Time step size: 1e − 2
• Size of Training Data: 10000
• Size of Test Data: 7500

4 Variable for Analysis:
• For Training: two transition phase, chosen from {0, 3} in real time

⇒ Two types of baseline model: MSE_0,MSE_3

8/25



Baseline Experiment Result

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0000

0.0005

0.0010

0.0015
Train Loss
Test Loss

Loss Behavior of MSE Loss

Figure: Train and Test Loss of Neural ODE
without transition phase

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020
Train Loss
Test Loss

Loss Behavior of MSE Loss

Figure: Train and Test Loss of Neural ODE
with transition phase

• As expected, training loss was small
• Low test error also implies that generalization error will be low as well

9/25



Baseline Experiment Result

Figure: Phase Plot of True Lorenz and MSE_3’s Lorenz starting from outside of attractor

10/25



Baseline Experiment Result

Figure: Phase Plot of True Lorenz and MSE_0’s Lorenz starting from outside of attractor

11/25



Baseline Experiment Result

Figure: Animation of 3D Attractor

12/25



Finding

1 Transition phase in traning dataset impacts learning

Phase Plot LE

MSE_0 wrong incorrect [0.8926,−0.0336,−6.0616]
MSE_3 wrong incorrect [0.9122,−0.0187,−6.1176]

2 Neural ODE’s learned dynamic is not ergodic.

⇒ Generalization error of Neural ODE being small does not imply that true
dynamics are learned!

13/25



Research Question 2: How can we make a Neural ODE learn

the true dynamics and its statistics?

1 What is our proposed algorithm?

2 Using the same metric above, can we observe that it can learn true chaotic,
ergodic system?

14/25



The Proposed Algorithm

• Same supervised learning problem: (xi, ϕ(xi))
• Introducing new loss function

New Empirical Risk Minimization Problem

Jacobian loss = lnew(x, h) = ∥ϕ∆t
h (x)− ϕ∆t

f (x)∥2 + λ∥∇h(x)−∇f(x)∥

• λ is regularization parameter

15/25



NewModel’s Experiment Setting

1 Architecture: 3 Layer Feed Forward Network

2 Training Algorithm: AdamW
• Learning rate: 5e − 4
• Number of epoch: 20000

3 Data: are generated from [0, 180] integration time.
• Time step size: 1e − 2
• Size of Training Data: 10000
• Size of Test Data: 7500

4 Variable for Analysis:
• For training, Transition phase: chosen from {0, 3} in real time

⇒ Two types of new model: JAC_0, JAC_3

16/25



Summary of Two Experiments

Figure: 4 Models

• ”0” means transition phase is
included

• ”3” means transition phase of
300 data points is excluded

• But what difference does it
make?

17/25



Experiment Result 1: Loss Behavior
Train Loss (Jac or MSE) Test Loss (MSE)

MSE_0 1.1158e − 05 3.0489e − 05
MSE_3 9.6705e − 05 0.0001
JAC_0 1.1301 9.6022e − 06
JAC_3 1.0507 2.6281e − 05

Table: Loss

Figure: Train & Test Loss of MSE and JAC
18/25



Experiment Result 2: Orbit

Figure: Phase plot from JAC_0 solution

19/25



Experiment Result 3-1: Wasserstein Distance

Model from attractor out of attractor

MSE_0 [0.2211, 0.2188, 0.2597] trajectory explodes
MSE_3 [4.9432, 5.1924, 3.7964] [10.2379, 10.8456, 7.8666]
JAC_0 [0.2649, 0.2863, 0.0934] [1.0547, 1.0669, 0.0991]
JAC_3 [0.5337, 0.5399, 0.1708] [1.0872, 1.1359, 0.3524]

Table: Wasserstein Distance

20 10 0 10 200.00

0.02

0.04

0.06
rk4
NODE

Figure: Distribution for MSE_0’s x component

20 10 0 10 200.00

0.02

0.04
rk4
NODE

Figure: Distribution for JAC_0’s x component

20/25



Experiment Result 3-2: Time Average

2 1 0 1 2
log(n × t)

10 3

102

107

1012

1017

1022

1027

1032
lo

g 
|z

(
)

z|
Log-log Plot for Time Average Convergence

rk4
NODE

Figure: MSE_0, Init_Point = [1.0, 1.0, -1.0]

2 1 0 1 2
log(n × t)

10 3

102

107

1012

1017

1022

1027

1032

lo
g 

|z
(

)
z|

Log-log Plot for Time Average Convergence
rk4
NODE

Figure: MSE_0, Init_Point = [1.0, 0., 0.]

2 1 0 1 2
log(n × t)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

lo
g 

|z
(

)
z|

Log-log Plot for Time Average Convergence
rk4
NODE

Figure: JAC_0, Init_Point = [1.0, 1.0, -1.0]

2 1 0 1 2
log(n × t)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

lo
g 

|z
(

)
z|

Log-log Plot for Time Average Convergence
rk4
NODE

Figure: JAC_0, Init_Point = [1.0, 0., 0.]
21/25



Experiment Result 3-3: Lyapunov Exponent

Lyapunov Exponent Norm Difference

True LE [0.9, 0,−14]

MSE_0 [0.8926,−0.0336,−6.0616] 8.4715
MSE_3 [0.9122,−0.0187,−6.1176] 8.4155
JAC_0 [0.9022,−0.0024,−14.4803] 0.0655
JAC_3 [0.8493, 0.099,−14.5299] 0.0973

Table: Lyapunov Exponent

22/25



Experiment Result 3-4: Auto-Correlation

0 5 10 15 20 25 30 35 40
10

0

10

20

30

40

50

60

C x
,x

(
)

rk4
Neural ODE

Figure: MSE_0, Init_Point = [1.0, 1.0,−1.0]

0 5 10 15 20 25 30 35 40
10

0

10

20

30

40

50

60

C x
,x

(
)

rk4
Neural ODE

Figure: JAC_0, Init_Point = [1.0, 1.0,−1.0]
23/25



Finding

• Adding Jacobian to the loss for Neural ODE learns the correct dynamics for
lorenz-63 and its statistics! ⇒ ergodic, and chaotic dynamics

• Better simulated auto-correlation
• Computes correct Lyapunov Spectrum
• Reproduces correct phase plot
• Time average converges
• Simulated dataset shows similar distribution

24/25



Future Work

• For Lyapunov Exponents, it makes sense that adding jacobian to loss will lead
to better estimation of LEs

• But in general, does this work for any dynamical system? Why?
• Must redefine generalization error to reflect true learning of ergodic
dynamics

25/25



Thank you for coming! Any Questions?


	Background
	Learn Lorenz system from data: Baseline
	Baseline Experiment Details
	So what's the takeaway?

	Our solution
	Jac Model Experiment Details

	RQ2 | Experiment Result
	Future work

