7)) Georgia Institute
¥/ of Technology

Can a Neural ODE Learn a Chaotic System?

Jayjay Park, Nisha Chandramoorthy

Computational Science & Engineering Department

Informal Introduction to Dynamical System
® A system whose behavior is described by predefined rules
e Type: Discrete Time vs Continuous Time
Discrete Time Dynamical System
Ty = flzi-1,1)

e 1, = state variable of system at time t

e f=function that determines the rules by which the system changes its
state over time

Lorenz: A Dynamical System that is Non-linear, Discrete-time

Lorenz System
y ® Depending on the value of g, 3, p,

dr lorenz system can be fixed point,
a oy —1) periodic, and chaotic

d

jz =a(p—2)—y

d

é =uzy—fz

Edward N Lorenz. "Deterministic nonperiodic flow". In: Journal of atmospheric sciences 20.2 (1963),
pp. 130-141

Introducing Butterfly Attractor, Lorenz-63

Lorenz-63 is when parameters are o = 10, 5 = 8/3,p = 28

® | orenz-63 is a chaotic system

® deterministic systems, o
® extreme sensitivity to initial points Lo
® thus behaving like a random system J}ao
‘20
® Lorenz-63 is an ergodic system 50"
® adynamic system, whose ensemble - méo
average = time average . 10
e animation e L 4"
10 7 /zu

Figure: Lorenz-63

What would learning Lorenz-63 from data mean?

Learning a chaotic and ergodic system must mean that statistics are repro-
duced

® Learning a chaotic system would ¢ Learning an ergodic system would
mean mean
® Auto-correlation — O ® Time average should converge
® |yapunov Spectrum should match ® \Wasserstein Distance — O
to True Lyapunov Spectrum
[0.9,0, —14]

® Phase Plot should show strange
attractor

Neural ODE

Neural Ordinary Differential

th(tt) = ¢n(h(t),t,0) s.t.tel0,T)

® /(t) is a hidden layer which produces state at time ¢. Models the dynamics
® (is parameter of hidden layers
® ¢, is time integrator of A(t)

Ricky TQ Chen et al. "Neural ordinary differential equations”. In: Advances in neural information
processing systems 31(2018)

Research Question 1. Can a Neural ODE learn a chaotic system?

What is the learning problem of interest?

Does Neural ODE learn chaotic system?

Is training loss, and train loss reasonably low?

How does orbit look like?

Does statistical properties discussed above match?

Does introducing transition phase in training dataset will influence Neural ODE's
learning?

Learning Problem
® Supervised learning problem: (x;, ¢(z;))

Empirical Risk Minimization Problem: Given S = {x;}7*,, = € R,

m

~

1
R(h) = R,(h) = =N " Uz h
()= E Ry(h) SNIEDmm;(z)

MSE_loss = I(z, h) = || o2t (z) — ¢fAt(ﬂ3)||2

Neural ODE = d%gz);(x) = h(¢t(z)) teRT, zeR% pl(z) € RY

True_ODE = %qﬁ}(x) = flpi(z)) teRT, zeR% pi(z) € R?

Baseline Experiment Setting

Architecture: 3 Layer Feed Forward Network

Training Algorithm: AdamW

® | earningrate: 5e — 4
® Number of epoch: 20000

Data: are generated from [0, 180] integration time.

® Time step size: le — 2
® Size of Training Data: 10000
® Size of Test Data: 7500

Variable for Analysis:

® For Training: two transition phase, chosen from {0, 3} in real time

= Two types of baseline model: MSE_O, MSE_3

Baseline Experiment Result

Loss Behavior of MSE Loss Loss Behavior of MSE Loss

- 0.0020
Train Loss Train Loss
0.0015 —— Test Loss —— Test Loss
0.0015
0.0010 0.0010
0.0005 0.0005
0.0000 0.0000
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs Epochs
Figure: Train and Test Loss of Neural ODE Figure: Train and Test Loss of Neural ODE
without transition phase with transition phase

® As expected, training loss was small
® Low test error also implies that generalization error will be low as well

Baseline Experiment Result

30 50 50
20 40
10 30
> N
0 20
-10
10
-20
0
- - 30
10
o r 60 60
-10 :
» | z | ¢
20 20
-30
—40 0 oy 0 RTINS
-3 -20 -10 0 0 -3 -20 -10 0 10 -4 -30 -20 -10 0 10
X X Y

Figure: Phase Plot of True Lorenz and MSE_3's Lorenz starting from outside of attractor

Baseline Experiment Result

30 50 50
20 40
10 30
> N
0 20
-10
10
-20
0
- - 30
2.0
5 4
15
4 3
>1.0 N 3 N 2
2
0.5 .
= 1 1
0.0/ < o o <
0 i 2 3 4 0 2 4 6 0.0 0.5 1.0 15 2.0
M M g

Figure: Phase Plot of True Lorenz and MSE_O's Lorenz starting from outside of attractor

Baseline Experiment Result

Figure: Animation of 3D Attractor

Finding

Transition phase in traning dataset impacts learning

| Phase Plot | LE
MSE O wrong incorrect [0.8926, —0.0336, —6.0616]
MSE_3 wrong incorrect [0.9122, —0.0187, —6.1176]

Neural ODE's learned dynamic is not ergodic.

= Generalization error of Neural ODE being small does not imply that true
dynamics are learned!

Research Question 2;: How can we make a Neural ODE learn

the true dynamics and its statistics?

What is our proposed algorithm?

Using the same metric above, can we observe that it can learn true chaotic,
ergodic system?

The Proposed Algorithm

® Same supervised learning problem: (z;, ¢(z;))
® |ntroducing new loss function

New Empirical Risk Minimization Problem

Jacobian 0SS = lnew(w, h) = ||¢5"(2) — 67 (2)[|* + |V h(z) — VA2)||

®)\ is regularization parameter

New Model's Experiment Setting

Architecture: 3 Layer Feed Forward Network

Training Algorithm: AdamW

® | earningrate: 5e — 4
® Number of epoch: 20000

Data: are generated from [0, 180] integration time.

® Time step size: 1e — 2
® Size of Training Data: 10000
® Size of Test Data: 7500

Variable for Analysis:
® For training, Transition phase: chosen from {0, 3} in real time

= Two types of nhew model: JAC_O, JAC_3

Summary of Two Experiments

. . ® "0" means transition phase is
Loss Function Type Transition Phase .
included
® "3" means transition phase of
300 data points is excluded

e But what difference does it
make?

MEAN SQUARED
ERROR

NEURAL ODE

JACOBIAN
LOSS

Figure: 4 Models

Experiment Result 1: Loss Behavior
| Train Loss (Jac or MSE) | Test Loss (MSE)

250

200

150

100

50

MSE_O

1.1158e — 05

3.0489¢ — 05

MSE 3

9.6705e — 05

0.0001

JAC O

1.1301

9.6022e — 06

JAC 3

1.0507
Table: Loss

2.6281e — 05

Loss Behavior of Jacobian Loss Compared to MSE Loss

Training Loss of MSE 0.401

—_—Tr
raining Loss of Jacobian Loss 0.35]

0.301
0.25
< 0.201
0.151
0.10
0.051

0.001

Test Loss of MSE in MSE
= Test Loss of Jacobian Loss in MSE

0

2500 5000 7500 10000 12500 15000 17500 20000 0
Number of Epoch

2500 5000 7500 10000 12500 15000 17500 20000
Number of Epoch

Figure: Train & Test Loss of MSE and JAC

Experiment Result 2: Orbit

30
20 40
10 30
> N
0 20
-10
10
-20
0 - .
20 -10 0 10 20 -20 -10 0 10 20 -0 -0 o 10 2 3
X X

Figure: Phase plot from JAC_O solution

Experiment Result 3-1: Wasserstein Distance

0.06

0.04

0.02

0.00%

Model | from attractor

| out of attractor

MSE_O | [0.2211, 0.2188,0.2597
MSE_3 | [4.9432,5.1924, 3.7964
JAC O | [0.2649,0.2863,0.0934
JAC 3 | [0.5337,0.5399,0.1708]

trajectory explodes
[10.2379,10.8456, 7.8666]
[1.0547,1.0669,0.0991]
[1.0872,1.1359, 0.3524]

Table: Wasserstein Distance

e rk4

20 0 10

s NODE |

20
Figure: Distribution for MSE_O’s x component Figure: Distribution for JAC_0O's x component

0.04

0.02

0.0055 0 10 20

Experiment Result 3-2: Time Average

Figure: MSE_O, Init_Point =[1.0, 1.0, -1.0]

Log-log Plot for Time Average Convergence

— a4
—— NODE

- Y
: i

-2 -1 [T B
login x &)

Log-log Plot for Time Average Convergence

— e

—— NODE

= T g T B
log(n x 66)

Figure: MSE_0, Init_Point = [1.0, 0., 0]

—

log [2(1) - 2|

Log-log Plot for Time Average Convergence

— @

—— NODE

-2 -1] T 3
log(n x &)

Figure: JAC O, Init_Point = [1.0, 1.0, -1.0]

log [2(7) - 2|

Loglog Plot for Time Average Convergence

—— NODE

= T g 1 B
login x &)

Figure: JAC O, Init_Point =[1.0, 0., 0.]

Experiment Result 3-3: Lyapunov Exponent

| Lyapunov Exponent | Norm Difference

True LE [[0.9,0,—14] \

MSE_O | [0.8926,—0.0336, —6.0616] | 8.4715
MSE_3 | [0.9122,—0.0187,—6.1176] | 8.4155
JAC 0 | [0.9022, —0.0024, —14.4803] | 0.0655
JAC 3 | [0.8493,0.099, —14.5299)] 0.0973

Table: Lyapunov Exponent

Experiment Result 3-4: Auto-Correlation

—— rk4
—— Neural ODE

0 5 10 15 20 25 30 35 40

Figure: MSE_O, Init_Point = [1.0, 1.0, —1.0]

—— k4
~—=— Neural ODE

0 5 10 15 20 25 30 35 40
T

Figure: JAC_O, Init_Point = [1.0, 1.0, —1.0]

Finding

e Adding Jacobian to the loss for Neural ODE learns the correct dynamics for
lorenz-63 and its statistics! = ergodic, and chaotic dynamics
® Better simulated auto-correlation
Computes correct Lyapunov Spectrum
Reproduces correct phase plot
Time average converges
Simulated dataset shows similar distribution

Future Work

® For Lyapunov Exponents, it makes sense that adding jacobian to loss will lead
to better estimation of LEs

e But in general, does this work for any dynamical system? Why?

* Must redefine generalization error to reflect true learning of ergodic
dynamics

Thank you for coming! Any Questions?

	Background
	Learn Lorenz system from data: Baseline
	Baseline Experiment Details
	So what's the takeaway?

	Our solution
	Jac Model Experiment Details

	RQ2 | Experiment Result
	Future work

