

Can a Neural ODE Learn a Chaotic System?

Jayjay Park, Nisha Chandramoorthy

Computational Science & Engineering Department

Informal Introduction to Dynamical System

- *•* A system whose behavior is described by predefined rules
- *•* Type: Discrete Time vs Continuous Time

Discrete Time Dynamical System

$$
x_t = f(x_{t-1}, t)
$$

- x_t = state variable of system at time t
- *• f = function that determines the rules by which the system changes its state over time*

Lorenz: A Dynamical System that is Non-linear, Discrete-time

Lorenz System $\frac{dx}{dt} = \sigma(y - x)$ $\frac{dy}{dt} = x(\rho - z) - y$ $\frac{dz}{dt} = xy - \beta z$

• Depending on the value of *σ, β, ρ*, lorenz system can be *fixed point*, *periodic*, and *chaotic*

⁰Edward N Lorenz. "Deterministic nonperiodic flow". In: *Journal of atmospheric sciences* 20.2 (1963), pp. 130–141.

Introducing Butterfly Attractor, Lorenz-63

Lorenz-63 is when parameters are $\sigma = 10, \beta = 8/3, \rho = 28$

- *•* Lorenz-63 is a chaotic system
	- *•* deterministic systems,
	- extreme sensitivity to initial points
	- thus behaving like a random system
- *•* Lorenz-63 is an ergodic system
	- a dynamic system, whose ensemble average = time average
	- *• animation*

Figure: Lorenz-63

What would learning Lorenz-63 from data mean?

Learning a chaotic and ergodic system must mean that statistics are reproduced

- *•* Learning a chaotic system would mean
	- *•* Auto-correlation *→* 0
	- *•* Lyapunov Spectrum should match to True Lyapunov Spectrum [0*.*9*,* 0*, −*14]
	- Phase Plot should show strange attractor
- *•* Learning an ergodic system would mean
	- *•* Time average should converge
	- *•* Wasserstein Distance *→* 0

Neural ODE

Neural Ordinary Differential

$$
\frac{dh(t)}{dt} = \phi_h(h(t), t, \theta) \quad s.t. \ t \in [0, T]
$$

- *• h*(*t*) is a hidden layer which produces state at time *t*. Models the dynamics
- *• θ* is parameter of hidden layers
- *• ϕ^h* is time integrator of *h*(*t*)

⁰Ricky TQ Chen et al. "Neural ordinary differential equations". In: *Advances in neural information processing systems* 31 (2018).

Research Question 1: Can a Neural ODE learn a chaotic system?

What is the learning problem of interest?

Does Neural ODE learn chaotic system?

- Is training loss, and train loss reasonably low?
- *•* How does orbit look like?
- *•* Does statistical properties discussed above match?
- *•* Does introducing transition phase in training dataset will influence Neural ODE's learning?

Learning Problem

• Supervised learning problem: (*xⁱ , ϕ*(*xi*))

Empirical Risk Minimization Problem: $Given \ S = \{x_i\}_{i=1}^m, \ x \in \mathbb{R}^d$,

$$
\mathbf{R}(h) = \underset{S \sim D^m}{\mathbb{E}} \widehat{\mathbf{R}}_s(h) = \underset{S \sim D^m}{\mathbb{E}} \frac{1}{m} \sum_{i=1}^m l(z_i, h)
$$

MSE_loss = $l(x, h) = ||\phi_h^{\Delta t}(x) - \phi_f^{\Delta t}(x)||^2$

$$
Neural_ODE = \frac{d}{dt} \phi_h^t(x) = h(\phi_h^t(x)) \quad t \in \mathbb{R}^+, x \in \mathbb{R}^d, \phi_h^t(x) \in \mathbb{R}^d
$$

$$
True_ODE = \frac{d}{dt} \phi_f^t(x) = f(\phi_f^t(x)) \quad t \in \mathbb{R}^+, x \in \mathbb{R}^d, \phi_f^t(x) \in \mathbb{R}^d
$$

Baseline Experiment Setting

1 Architecture: 3 Layer Feed Forward Network

- 2 Training Algorithm: AdamW
	- *•* Learning rate: 5*e −* 4
	- *•* Number of epoch: 20000
- Data: are generated from [0, 180] integration time.
	- *•* Time step size: 1*e −* 2
	- *•* Size of Training Data: 10000
	- *•* Size of Test Data: 7500
- Variable for Analysis:
	- *•* For Training: two transition phase, chosen from *{*0*,* 3*}* in real time

⇒ Two types of baseline model: MSE_0, MSE_3

- *•* As expected, training loss was small
- *•* Low test error also implies that generalization error will be low as well

Figure: Phase Plot of True Lorenz and MSE_3's Lorenz starting from outside of attractor

Figure: Phase Plot of True Lorenz and MSE_0's Lorenz starting from outside of attractor

Figure: Animation of 3D Attractor

Finding

Transition phase in traning dataset impacts learning

Neural ODE's learned dynamic is not ergodic.

⇒ Generalization error of Neural ODE being small does not imply that true dynamics are learned!

Research Question 2: How can we make a Neural ODE learn the true dynamics and its statistics?

What is our proposed algorithm?

Using the same metric above, can we observe that it can learn true chaotic, ergodic system?

The Proposed Algorithm

- *•* Same supervised learning problem: (*xⁱ , ϕ*(*xi*))
- Introducing new loss function

New Empirical Risk Minimization Problem

Jacobian loss =
$$
l_{new}(x, h) = ||\phi_h^{\Delta t}(x) - \phi_f^{\Delta t}(x)||^2 + \lambda ||\nabla h(x) - \nabla f(x)||
$$

• λ is regularization parameter

New Model's Experiment Setting

- 1 Architecture: 3 Layer Feed Forward Network
- 2 Training Algorithm: AdamW
	- *•* Learning rate: 5*e −* 4
	- *•* Number of epoch: 20000
- Data: are generated from [0, 180] integration time.
	- *•* Time step size: 1*e −* 2
	- *•* Size of Training Data: 10000
	- *•* Size of Test Data: 7500
- Variable for Analysis:
	- *•* For training, Transition phase: chosen from *{*0*,* 3*}* in real time

⇒ Two types of new model: JAC_0, JAC_3

Summary of Two Experiments

- *•* "0" means transition phase is included
- *•* "3" means transition phase of 300 data points is excluded
- *•* But what difference does it make?

Experiment Result 1: Loss Behavior

Table: Loss

Figure: Train & Test Loss of MSE and JAC

Experiment Result 2: Orbit

Figure: Phase plot from JAC_0 solution

Experiment Result 3-1: Wasserstein Distance

	Model from attractor	out of attractor
	MSE $\overline{0}$ [0.2211, 0.2188, 0.2597]	trajectory explodes
MSE 3	[4.9432, 5.1924, 3.7964]	[10.2379, 10.8456, 7.8666]
JAC 0	[0.2649, 0.2863, 0.0934]	[1.0547, 1.0669, 0.0991]
JAC 3	[0.5337, 0.5399, 0.1708]	[1.0872, 1.1359, 0.3524]

Table: Wasserstein Distance

Experiment Result 3-2: Time Average

Figure: MSE_0, Init_Point = [1.0, 1.0, -1.0]

Figure: MSE_0, Init_Point = [1.0, 0., 0.]

Figure: JAC_0, Init_Point = [1.0, 1.0, -1.0]

Experiment Result 3-3: Lyapunov Exponent

Table: Lyapunov Exponent

Experiment Result 3-4: Auto-Correlation

Figure: MSE_0, Init_Point = [1*.*0*,* 1*.*0*, −*1*.*0]

Finding

- *•* Adding Jacobian to the loss for Neural ODE learns the correct dynamics for lorenz-63 and its statistics! *⇒* ergodic, and chaotic dynamics
	- *•* Better simulated auto-correlation
	- *•* Computes correct Lyapunov Spectrum
	- *•* Reproduces correct phase plot
	- *•* Time average converges
	- *•* Simulated dataset shows similar distribution

Future Work

- *•* For Lyapunov Exponents, it makes sense that adding jacobian to loss will lead to better estimation of LEs
- *•* But in general, does this work for any dynamical system? Why?
- *•* Must redefine generalization error to reflect true learning of ergodic dynamics

Thank you for coming! Any Questions?